Rendering学習日記

日々3DCGの世界は進歩しているけど、勉強して理解したことをまとめていきたい。RenderMan互換レンダラーやグローバル・イルミネーション。いろんなことに好奇心を持ち面白くなってくる。目指せShader書き!!

Manjaro Linux18 python cgkit install

Manjaro Linux 18 (Arch linux) Thunderbolt3 SSD

ノートPC,LG gram 13Z980-NA77JにThunderbolt3 SSD archgon X70 240GBを外付けで使って認識しました。Windows10高速スタートアップを切り、shiftキーを押しながら「再起動」から「デバイスの選択」、「Nvme0」選択して、再起動するManjaro Linuxが起動しています。
$ sudo hdparm -t /dev/nvme0n1
/dev/nvme0n1:
HDIO_DRIVE_CMD(identify) failed: Inappropriate ioctl for device
Timing buffered disk reads: 2184 MB in 3.00 seconds = 727.63 MB/sec

■ハードウェア確認。
$ sudo pacman -S bolt
$ sudo pacman -S hardinfo
$ sudo pacman -S lshw
$ sudo pacman -S gsmartcontrol
$ sudo lshw -class disk -class storage
$ sudo fdisk -l

$ sudo hdparm -t /dev/nvme0n1
$ sudo smartctl -a /dev/nvme0n1

$ sudo pacman -Syu

■日本語入力
$ sudo pacman -S --needed qt5-translations
$ sudo pacman -S fcitx-mozc fcitx-gtk2 fcitx-gtk3 fcitx-qt5 kcm-fcitx

$ nano .xprofile
以下を記入保存。
export GTK_IM_MODULE=fcitx
export QT_IM_MODULE=fcitx
export XMODIFIERS=@im=fcitx

■python cgkit installの準備。
$ sudo pacman -S python2-pygame python2-opengl python2-pyserial ode tk
$ sudo pacman -S boost boost-libs scons

AURに登録されているパッケージをインストールするためのパッケージを導入します。yay(Yet another Yogurt)をインストールします。

$ sudo pacman -S git
$ git clone https://aur.archlinux.org/yay.git
$ cd yay
$ makepkg -si

$ yay -S python2-pyode

■PIL1.1.7インストール
Manjaro Linuxはpython3が基本なので、ユーザのhomeにダミーディレクトリを作成します。
$ mkdir ~/bin
$ ln -s /usr/bin/python2 ~/bin/python
$ ln -s /usr/bin/python2-config ~/bin/python-config
$ export PATH=~/bin:$PATH
これでpython2.7が起動します。

毎回、python2を使うためには、
開いたターミナルで$ export PATH=~/bin:$PATHをします。

PIL1.1.7をダウンロード。
http://www.pythonware.com/products/pil/

$ cd Downloads/
$ tar xvf Imaging-1.1.7.tar.gz

$ python setup.py build_ext -i
$ sudo python setup.py install

■PyProtocolsインストール
http://peak.telecommunity.com/PyProtocols.html
http://peak.telecommunity.com/dist/

$ unzip PyProtocols-0.9.3.zip
$ sudo python setup.py --without-speedups install

■python cgkit2.0インストール
cgkitを入手します。
https://sourceforge.net/projects/cgkit/files/cgkit/
以下はcgkitのインストールです。
$ cd ../
~/Downloads$ tar xvf cgkit-2.0.0-py2k.tar.gz

環境を確認します。
$ cd cgkit-2.0.0/
$ cd utilities/
$ python checkenv.py
以下を実行します。
$ cd ../
$ cd supportlib/
$ scons
しばらく待ちます。
scons: done building targets.

$ cd ../
$ python setup.py build
■Build時のエラー対処
[solved]
py_slot.h,43行目snameの両側に空白スペースを入れる "_" sname "

[solved]
py_geoms1.cpp,line:145行 and line:166行 boost::python::make_tuple に変更します。


$ sudo python setup.py install

cgkitサイトのtutorialからdemoファイルを入手します。
http://cgkit.sourceforge.net/tutorials/demo1.html
http://cgkit.sourceforge.net/tutorials/demo2.html
http://cgkit.sourceforge.net/tutorials/demo3.html
http://cgkit.sourceforge.net/tutorials/renderman.html

$ viewer.py demo3.py
マウス alt+左ドラッグを使うために
Manjaro Linux xfceの場合
設定→ウインドウマネージャー(詳細)→アクセシビィリティ→
ウインドウを掴んだり移動するために使うキーを「None」にします。
cgkit | - | -

python cgkit has been installed on my Zorin-OS-12.4-Core-64

Virtualboxにubuntu系のZorinOSをインストールしました。
はじめにRenderMan互換rendererのpixieをインストールしました。詳しくは前の記事に書きました。
http://rman.sakura.ne.jp/sb/log/eid528.html

以下をインストールします。
$ sudo apt install python-dev
$ sudo apt install python-opengl
$ sudo apt install python-pygame
$ sudo apt install libboost-python-dev
$ sudo apt install python-pyode
$ sudo apt install libode-dev
$ sudo apt install python-serial
$ sudo apt install python-protocols
$ sudo apt install scons

ubuntuのpackageのpython-pilはインストールしません。
64bitの環境でcgkitでのテクスチャがうまく使えないので
PIL1.1.7をダウンロードしてきます。
http://www.pythonware.com/products/pil/

以下、pil1.1.7をubuntu系でインストールするための設定です。
$ sudo ln -s /usr/lib/x86_64-linux-gnu/libz.so /usr/lib
$ sudo ln -s /usr/lib/x86_64-linux-gnu/libfreetype.so /usr/lib
$ sudo ln -s /usr/lib/x86_64-linux-gnu/libjpeg.so /usr/lib

$ sudo apt install python-tk tk8.5-dev tcl8.5-dev tk8.5 tcl8.5
ここでtkinterが動くか確認します。大文字のTになっています。
$ python -m Tkinter

pil1.1.7を解凍します。
$ cd Downloads/
$ tar xvf Imaging-1.1.7.tar.gz
$ cd Imaging-1.1.7/

setup.pyの以下の部分にpathを書き加えます。
$ nano setup.py

TCL_ROOT = "/usr/include/tcl8.5/"
JPEG_ROOT = "/usr/lib/x86_64-linux-gnu/"
ZLIB_ROOT = "/usr/lib/x86_64-linux-gnu/"
TIFF_ROOT = None
FREETYPE_ROOT = "/usr/lib/x86_64-linux-gnu/"
LCMS_ROOT = None

pil1.1.7をビルドします。

python setup.py build_ext -i

pil1.1.7をインストールします。ログを記録します。
sudo python setup.py install --record files.txt

アンインストールするときは以下を使います。
cat files.txt | xargs rm -rf

running install_scripts
copying build/scripts-2.7/pilfile.py -> /usr/local/bin
copying build/scripts-2.7/pilprint.py -> /usr/local/bin
copying build/scripts-2.7/pilfont.py -> /usr/local/bin
copying build/scripts-2.7/pildriver.py -> /usr/local/bin
copying build/scripts-2.7/pilconvert.py -> /usr/local/bin
changing mode of /usr/local/bin/pilfile.py to 775
changing mode of /usr/local/bin/pilprint.py to 775
changing mode of /usr/local/bin/pilfont.py to 755
changing mode of /usr/local/bin/pildriver.py to 775
changing mode of /usr/local/bin/pilconvert.py to 775
running install_egg_info
Writing /usr/local/lib/python2.7/dist-packages/PIL/PIL-1.1.7.egg-info
creating /usr/local/lib/python2.7/dist-packages/PIL.pth
writing list of installed files to 'files.txt'

PIL1.1.7が動くか確認します。
~/Downloads/Imaging-1.1.7$ python
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import Image
>>>
ctrl+dで抜けます。

こちらでも確認します。
$ python selftest.py
--------------------------------------------------------------------
PIL 1.1.7 TEST SUMMARY
--------------------------------------------------------------------
Python modules loaded from ./PIL
Binary modules loaded from ./PIL
--------------------------------------------------------------------
--- PIL CORE support ok
--- TKINTER support ok
--- JPEG support ok
--- ZLIB (PNG/ZIP) support ok
--- FREETYPE2 support ok
*** LITTLECMS support not installed
--------------------------------------------------------------------
Running selftest:
--- 57 tests passed.

cgkitは--- ZLIB (PNG/ZIP) support okでないとテクスチャが渡せません。

cgkitを入手します。
https://sourceforge.net/projects/cgkit/files/cgkit/
以下はcgkitのインストールです。
$ cd ../
~/Downloads$ tar xvf cgkit-2.0.0-py2k.tar.gz

環境を確認します。
$ cd cgkit-2.0.0/
$ cd utilities/
$ python checkenv.py
----------------------------------------------------------------------
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.0 20160609]
Platform: linux2
----------------------------------------------------------------------
Python version: 2.7........... OK
PyProtocols................... is installed
PyOpenGL...................... is installed
PIL........................... is installed
pygame........................ is installed
PyODE......................... is installed
PySerial...................... is installed
cgkit (base).................. missing
cgkit (C++ lib)............... failed

The cgkit supportlib could not be imported. One possible reason for that
is that shared libraries (such as the boost_python runtime or OpenGL)
could not be found.

cgkit (all)................... failed

cgkitだけがインストールされてないので
以下を実行します。
$ cd ../
$ cd supportlib/
$ scons
しばらく待ちます。
scons: done building targets.
$ cd ../
$ sudo python setup.py install
しばらく待ちます。
running install_scripts
copying build/scripts-2.7/postbake.py -> /usr/local/bin
copying build/scripts-2.7/seqmv.py -> /usr/local/bin
copying build/scripts-2.7/seqrm.py -> /usr/local/bin
copying build/scripts-2.7/viewer.py -> /usr/local/bin
copying build/scripts-2.7/seqcp.py -> /usr/local/bin
copying build/scripts-2.7/convert3d.py -> /usr/local/bin
copying build/scripts-2.7/info3d.py -> /usr/local/bin
copying build/scripts-2.7/seqls.py -> /usr/local/bin
copying build/scripts-2.7/render.py -> /usr/local/bin
changing mode of /usr/local/bin/postbake.py to 755
changing mode of /usr/local/bin/seqmv.py to 755
changing mode of /usr/local/bin/seqrm.py to 755
changing mode of /usr/local/bin/viewer.py to 755
changing mode of /usr/local/bin/seqcp.py to 755
changing mode of /usr/local/bin/convert3d.py to 755
changing mode of /usr/local/bin/info3d.py to 755
changing mode of /usr/local/bin/seqls.py to 755
changing mode of /usr/local/bin/render.py to 755
running install_egg_info
Writing /usr/local/lib/python2.7/dist-packages/cgkit-2.0.0.egg-info
... finished setup
インストール完了です。
$ cd utilities/
mak@zorinos:~/Downloads/cgkit-2.0.0/utilities$ python checkenv.py
----------------------------------------------------------------------
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.0 20160609]
Platform: linux2
----------------------------------------------------------------------
Python version: 2.7........... OK
PyProtocols................... is installed
PyOpenGL...................... is installed
PIL........................... is installed
pygame........................ is installed
PyODE......................... is installed
PySerial...................... is installed
cgkit (base).................. 2.0.0 (Nov 09 2018)
cgkit (C++ lib)............... OK
cgkit (all)................... OK

pythonで確認します。
$ python
Python 2.7.12 (default, Dec 4 2017, 14:50:18)
[GCC 5.4.0 20160609] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from cgkit.all import *
>>>

cgkitサイトのtutorialかdemoを入手します。
http://cgkit.sourceforge.net/tutorials/demo1.html
http://cgkit.sourceforge.net/tutorials/demo2.html
http://cgkit.sourceforge.net/tutorials/demo3.html
http://cgkit.sourceforge.net/tutorials/renderman.html
$viewer.py demo3.py

---------------------------------------------------------
cgkitのインストール時にエラーが出る場合
以下を参考にしてください。
以下、error:
In file included from wrappers/py_arrayslots1.cpp:5:0:
wrappers/py_arrayslots1.cpp: In function ‘void class_ArraySlots()’:
wrappers/py_slot.h:43:75: error: unable to find string literal operator ‘operator""sname’ with ‘const char [11]’, ‘long unsigned int’ arguments
e ARRAYSLOT(sname,stype) class_<_ArraySlotIterator >("_"sname"_Iterator", init&>()) \
^
wrappers/py_slot.h:43:75: note: in definition of macro ‘ARRAYSLOT’
e ARRAYSLOT(sname,stype) class_<_ArraySlotIterator >("_"sname"_Iterator", init&>()) \
^~~~~~~~~~~
wrappers/py_slot.h:43:75: error: unable to find string literal operator ‘operator""sname’ with ‘const char [11]’, ‘long unsigned int’ arguments
e ARRAYSLOT(sname,stype) class_<_ArraySlotIterator >("_"sname"_Iterator", init&>()) \
^
wrappers/py_slot.h:43:75: note: in definition of macro ‘ARRAYSLOT’
e ARRAYSLOT(sname,stype) class_<_ArraySlotIterator >("_"sname"_Iterator", init&>()) \
^~~~~~~~~~~
error: command 'x86_64-linux-gnu-gcc' failed with exit status 1
---------------------------------------

[solved]
py_slot.h,43行目snameの両側に空白スペースを入れる "_" sname "

[solved]
py_geoms1.cpp,line:145行 and line:166行 boost::python::make_tuple に変更します。
cgkit | - | -

Bodhi Linux and Pixie Renderer install under gnome boxes

Ubuntu系のLinux 64bitでPixie Rendererを動かしました。
RIBが使える唯一のRenderMan互換rendererになるかもしれません。
Dispersion.jpg
Fedora28のgnome boxesにBodhi Linux5.0 64bitをインストールしました。
ダウンロードしたのは、bodhi-5.0.0-apppack-64.iso (1.5GB)
Pixie Rendererをビルドしました。
Pixie Rendererをダウンロードしてきます。
https://sourceforge.net/projects/pixie/

解凍します。
$ tar xvf Pixie-src-2.2.6.tgz
$ cd Pixie/
$ ./configure
...
ellipsis (省略)
...
errorが出ますので、以下、いくつかインストールします。
管理者権限で、
$ sudo -i

~# apt install update

~# apt install bison
~# apt install flex
~# apt install build-essential

~# apt install libtiff-dev
~# apt install libpng-dev
~# apt install libopenexr-dev
~# apt install fluid
~# apt install libcairo2-dev libxft-dev libxinerama-dev

*****************************************
次に、以下のpatchをあてます。https://sourceforge.net/projects/pixie/のticketにあります。
ファイル名pixie-2.2.6-gcc6.patchをダウンロードします。
https://sourceforge.net/p/pixie/patches/23/
上記から入手してください。
上のパッチを解凍したPixie/src/commonに保存します。
以下を実行します。

$ cd src/common
$ patch < pixie-2.2.6-gcc6.patch
patching file global.h

パッチをあてないでmakeすると以下のようなエラーが出ます。

In file included from ../common/algebra.h:188,
from file.cpp:33:
../common/mathSpec.h: 関数 ‘void fresnel(const float*, const float*, float, float&, float&, float*, float*)’ 内:
../common/mathSpec.h:548:30: エラー: ‘max’ was not declared in this scope
const SCALAR_TYPE g = SQRT(max(t,0));
^~~
../common/mathSpec.h:548:30: 備考: suggested alternative: ‘fmax’
const SCALAR_TYPE g = SQRT(max(t,0));
^~~
fmax
../common/mathSpec.h:553:9: エラー: ‘min’ was not declared in this scope
Kr = min(Kr,1);
^~~
../common/mathSpec.h:553:9: 備考: suggested alternative: ‘sin’
Kr = min(Kr,1);
^~~
sin
In file included from ../common/algebra.h:199,
from file.cpp:33:
../common/mathSpec.h: 関数 ‘void fresnel(const double*, const double*, double, double&, double&, double*, double*)’ 内:
../common/mathSpec.h:548:30: エラー: ‘max’ was not declared in this scope
const SCALAR_TYPE g = SQRT(max(t,0));
^~~
../common/mathSpec.h:548:30: 備考: suggested alternative: ‘fmax’
const SCALAR_TYPE g = SQRT(max(t,0));
^~~
fmax
../common/mathSpec.h:553:9: エラー: ‘min’ was not declared in this scope
Kr = min(Kr,1);
^~~
../common/mathSpec.h:553:9: 備考: suggested alternative: ‘sin’
Kr = min(Kr,1);
^~~
sin
make[3]: *** [Makefile:317: file.lo] エラー 1


*************************************************
$ cd ../../ でPixieフォルダに戻ります。
$ ./configure を実行します。
------------------------------------------------
---> FLTK not found.
---> You can download it from www.fltk.org
---> show will not be built.
------------------------------------------------
Installation info:
PIXIEHOME: /opt/pixie
Documentation: /opt/pixie/doc
Shaders: /opt/pixie/shaders
RIBs: /opt/pixie/ribs
Textures: /opt/pixie/textures
Displays: /opt/pixie/displays
Procedurals: /opt/pixie/procedurals
Modules: /opt/pixie/modules
------------------------------------------------
To build Pixie:
>make
>make install
Terminus Est

FLTK not found.は無視します。他にエラーがなければいよいよmakeです。

$ make

エラーがいくつか出てきます。テキストエディタで(gzFile)を記入していきます。

In file included from rendererContext.cpp:77:0:
ribOut.h: In member function ‘void CRibOut::vout(const char*, __va_list_tag*)’:
ribOut.h:240:61: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzwrite(gzFile, voidpc, unsigned int)’
if (outputCompressed) gzwrite(outFile,scratch,l);
^
ribOut.h: In member function ‘void CRibOut::out(const char*, ...)’:
ribOut.h:261:61: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzwrite(gzFile, voidpc, unsigned int)’
if (outputCompressed) gzwrite(outFile,scratch,l);
^
rendererContext.cpp: In member function ‘virtual void CRendererContext::RiError(int, int, const char*)’:
rendererContext.cpp:4706:20: warning: format not a string literal and no format arguments [-Wformat-security]
fprintf(out,tmp);
^
Makefile:485: recipe for target 'rendererContext.lo' failed
make[4]: *** [rendererContext.lo] Error 1
make[4]: Leaving directory '/home/yokamak/Download/Pixie/src/ri'


ファイルribOut.h
240行目
if (outputCompressed) gzwrite((gzFile)outFile,scratch,l);240
261行目
if (outputCompressed) gzwrite((gzFile)outFile,scratch,l);261
(gzFile)を追記します。

$ makeします。


rib.l: In function ‘int riblex(YYSTYPE*)’:
rib.l:211:5: error: ‘riblval’ was not declared in this scope
\"[^\"]*\" { riblval->string = rstrdup(ribtext+1,CRenderer::globalMemory); riblval->string[strlen(riblval->string)-1] = '\0'; return RIB_TEXT;}
^~~~~~~
rib.l:211:5: note: suggested alternative: ‘ribval’
\"[^\"]*\" { riblval->string = rstrdup(ribtext+1,CRenderer::globalMemory); riblval->string[strlen(riblval->string)-1] = '\0'; return RIB_TEXT;}
^~~~~~~
ribval
In file included from rib.y:2835:0:
rib.l:212:44: error: ‘riblval’ was not declared in this scope
[+-]?([0-9]+|([0-9]*(\.[0-9]+)?)([eE][+-]?[0-9]+)?) { /*sscanf(ribtext,"%f",&riblval->real);*/ riblval->real = (float) atof(ribtext); return RIB_FLOAT; }
^~~~~~~
rib.l:212:44: note: suggested alternative: ‘ribval’
[+-]?([0-9]+|([0-9]*(\.[0-9]+)?)([eE][+-]?[0-9]+)?) { /*sscanf(ribtext,"%f",&riblval->real);*/ riblval->real = (float) atof(ribtext); return RIB_FLOAT; }
^~~~~~~
ribval
In file included from rib.y:2835:0:
rib.l:213:44: error: ‘riblval’ was not declared in this scope
[+-]?([0-9]+|([0-9]+(\.[0-9]*)?)([eE][+-]?[0-9]+)?) { /*sscanf(ribtext,"%f",&riblval->real);*/ riblval->real = (float) atof(ribtext); return RIB_FLOAT; }
^~~~~~~
rib.l:213:44: note: suggested alternative: ‘ribval’
[+-]?([0-9]+|([0-9]+(\.[0-9]*)?)([eE][+-]?[0-9]+)?) { /*sscanf(ribtext,"%f",&riblval->real);*/ riblval->real = (float) atof(ribtext); return RIB_FLOAT; }
^~~~~~~
ribval
In file included from rib.y:2835:0:
rib.l:216:3: error: ‘riblval’ was not declared in this scope
#\!.* { riblval->string = rstrdup(ribtext+2,CRenderer::globalMemory); return RIB_STRUCTURE_COMMENT; }
^~~~~~~
rib.l:216:3: note: suggested alternative: ‘ribval’
#\!.* { riblval->string = rstrdup(ribtext+2,CRenderer::globalMemory); return RIB_STRUCTURE_COMMENT; }
^~~~~~~
ribval
In file included from rib.y:2835:0:
rib.l:226:29: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzclose(gzFile)’
gzclose(ribin);
^
In file included from rib.y:2835:0:
rib.l:246:29: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzclose(gzFile)’
gzclose(ribin);
^
In file included from rib.y:2835:0:
lex.rib.cpp: In function ‘int yy_get_next_buffer()’:
rib.l:20:77: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzread(gzFile, voidp, unsigned int)’
YY_INPUT(buf, retval, maxlen) if ( (retval = gzread(ribin,buf,maxlen)) < 0) \
^
lex.rib.cpp:2636:3: note: in expansion of macro ‘YY_INPUT’
YY_INPUT( (&YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move]),
^~~~~~~~
rib.y: In function ‘void ribParse(const char*, void (*)(const char*, ...))’:
rib.y:2943:17: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzclose(gzFile)’
gzclose(ribin);
^
Makefile:485: recipe for target 'rib.lo' failed
make[4]: *** [rib.lo] Error 1

上記のエラーは、https://sourceforge.net/projects/pixie/のticketに書いてあります。

--- gentoo/media-gfx/pixie/pixie-2.2.6-r1.ebuild 2012-03-10 10:19:20.000000000 +0100
+++ myrep/media-gfx/pixie/pixie-2.2.6-r1.ebuild 2015-01-26 04:47:00.000000000 +0100
@@ -55,6 +55,9 @@
# parallelism can break the regeneration process, with resulting
# missing shaders.
rm "${S}"/shaders/*.sdr
+
+ # FIX: flex does not translate variable name in custom YY_DECL
+ sed -i -e '/define YY_DECL/ s/yylval/riblval/' src/ri/rib.l
}

src_configure() {


以下を実行します。
$ sed -i -e '/define YY_DECL/ s/yylval/riblval/' src/ri/rib.l


続けて
$ makeします。

In file included from rib.y:2835:0:
rib.l: In function ‘int riblex(YYSTYPE*)’:
rib.l:226:29: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzclose(gzFile)’
gzclose(ribin);
^
In file included from rib.y:2835:0:
rib.l:246:29: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzclose(gzFile)’
gzclose(ribin);
^
In file included from rib.y:2835:0:
lex.rib.cpp: In function ‘int yy_get_next_buffer()’:
rib.l:20:77: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzread(gzFile, voidp, unsigned int)’
YY_INPUT(buf, retval, maxlen) if ( (retval = gzread(ribin,buf,maxlen)) < 0) \
^
lex.rib.cpp:2636:3: note: in expansion of macro ‘YY_INPUT’
YY_INPUT( (&YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move]),
^~~~~~~~
rib.y: In function ‘void ribParse(const char*, void (*)(const char*, ...))’:
rib.y:2943:17: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzclose(gzFile)’
gzclose(ribin);
^
Makefile:485: recipe for target 'rib.lo' failed
make[4]: *** [rib.lo] Error 1
make[4]: Leaving directory '/home/yokamak/Download/Pixie/src/ri'
Makefile:328: recipe for target 'all' failed
make[3]: *** [all] Error 2


ファイルrib.l :20行目
#define YY_INPUT(buf, retval, maxlen) if ( (retval = gzread((gzFile)ribin,buf,maxlen)) < 0)

:226行目と :246行目
gzclose((gzFile)ribin);

続けて
$ makeします。

rib.y: In function ‘void ribParse(const char*, void (*)(const char*, ...))’:
rib.y:2943:17: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzclose(gzFile)’
gzclose(ribin);
^
Makefile:485: recipe for target 'rib.lo' failed
make[4]: *** [rib.lo] Error 1

ファイルrib.y
:2943行目
#ifdef HAVE_ZLIB
gzclose((gzFile)ribin);
#else

続けて
$ makeします。

ribOut.cpp: In destructor ‘virtual CRibOut::~CRibOut()’:
ribOut.cpp:165:20: error: cannot convert ‘FILE* {aka _IO_FILE*}’ to ‘gzFile {aka gzFile_s*}’ for argument ‘1’ to ‘int gzclose(gzFile)’
gzclose(outFile);
^
Makefile:485: recipe for target 'ribOut.lo' failed

ファイルribOut.cpp
:165行目
gzclose((gzFile)outFile);

続けて
$ makeします。

make[3]: Leaving directory '/home/yokamak/Download/Pixie/src/sdrinfo'
Making all in show
make[3]: Entering directory '/home/yokamak/Download/Pixie/src/show'
make[3]: Nothing to be done for 'all'.
make[3]: Leaving directory '/home/yokamak/Download/Pixie/src/show'
make[3]: Entering directory '/home/yokamak/Download/Pixie/src'
make[3]: Nothing to be done for 'all-am'.
make[3]: Leaving directory '/home/yokamak/Download/Pixie/src'
make[2]: Leaving directory '/home/yokamak/Download/Pixie/src'
Making all in doc
make[2]: Entering directory '/home/yokamak/Download/Pixie/doc'
make[2]: Nothing to be done for 'all'.
make[2]: Leaving directory '/home/yokamak/Download/Pixie/doc'
make[2]: Entering directory '/home/yokamak/Download/Pixie'
make[2]: Leaving directory '/home/yokamak/Download/Pixie'
make[1]: Leaving directory '/home/yokamak/Download/Pixie'

make完了!!!
管理者権限で、
$ sudo -i
# make install

これで/opt/pixie/にインストールされました。shaderをコンパイルしなおします。

root@bodhi:/home/yokamak/Download/Pixie# cd /opt/pixie/shaders/
root@bodhi:/opt/pixie/shaders# /opt/pixie/bin/sdrc *.sl
Compiling ambientindirect.sl
Compiling ambientlight.sl
Compiling ambientocclusion.sl
Compiling arealight.sl
Compiling constant.sl
Compiling distantlight.sl
Compiling fog.sl
Compiling glass.sl
Compiling matte.sl
Compiling metal.sl
Compiling mirror.sl
Compiling mtorDirectionalLight.sl
Compiling mtorLambert.sl
Compiling mtorPhong.sl
Compiling normdir.sl
Compiling paintedmatte.sl
Compiling paintedplastic.sl
Compiling plastic.sl
Compiling pointlight.sl
Compiling rayarea.sl
Compiling raydistant.sl
Compiling raypoint.sl
Compiling shadowarea.sl
Compiling shadowdistant.sl
Compiling shadowpoint.sl
Compiling shadowspot.sl
Compiling spotlight.sl
root@bodhi:/opt/pixie/shaders# logout (ctrl+dで)

最後にPixie RendererのPATHを編集します。
yokamak@bodhi:~/Download/Pixie$ cd ~
yokamak@bodhi:~$ nano .profile
以下を記入
export PIXIEHOME=/opt/pixie/
export PATH=$PATH:$PIXIEHOME/bin
export SHADERS=$PIXIEHOME/shaders


$ source .profileを実行。
以下のaqsis rendererのsimple.ribを実行してみます。
$ rndr -d simple.rib
##RenderMan RIB-Structure 1.0
FrameBegin 1
Display "simple.tif" "framebuffer" "rgba"
Format 640 480 -1
ShadingRate 1
Projection "perspective" "fov" [30]
FrameAspectRatio 1.33
Identity
# Default distant headlight
LightSource "distantlight" 1
# Camera transformation
Translate 0 0 5
WorldBegin
Identity
AttributeBegin
Color [1.0 0.6 0.0] # A nice orange color
Surface "plastic" "Ka" [1] "Kd" [0.5] "Ks" 1 "roughness" 0.1
TransformBegin
Rotate 90 1 0 0 # Rotate +z to +y. "Up" in default camera coordinates is +y,
Sphere 1 -1 1 360 # but the Sphere primitive has its poles on the z axis.
TransformEnd
AttributeEnd
WorldEnd
FrameEnd

simple.jpg
RenderMan | - | -

Linux設定メモ

2018/10/23
■Linux設定メモ

ホームディレクトリのフォルダ名を日本語から英語に変更する
$ LANG=C xdg-user-dirs-gtk-update

nautilus-open-terminal
フォルダ内右クリックで[端末の中に開く]

cannot restore segment prot after reloc permission denied
SELinuxのライブラリに対するセキュリティ属性が適切に設定されていない……lightflowPM.soなどのセキュリティ属性を変更する。
rootユーザで
chcon -c -v -R -u system_u -r object_r -t textrel_shlib_t xxx.so


バッテリー確認
$ upower -d

実行形式
$ chmod -R 755 simplescene*

フォルダ削除 一つ上の場所で
# sudo rm -rf gcc-2.95/

Virtualbox dvd-r読み書き用に元ユーザを参加させる
$ sudo gpasswd -a mac vboxusers

フォルダのコピー
$ cp -r gcc-2.95 ~/Documents/
$ sudo cp -r gcc-2.95 /usr/local

Linuxバージョン確認
$ cat /proc/version

/lib/x86_64-linux-gnu/libc.so.6

削除
sudo rpm -e VirtualBox-5.2-5.2.18_124319_fedora26-1.x86_64
インストール
sudo rpm -ivh VirtualBox-5.2-5.2.20_125813_fedora26-1.x86_64.rpm


DVD書込み
growisofs -Z /dev/cdrom -R -J /home/mac/Downloads/isodata/

ありがとうございます。
最初の書込み(R/RW共通),上書きの場合(RWのみ)
growisofs -Z /dev/dvd -R -J ファイル and/or ディレクトリ(群)

追加書込みの場合(R/RW共通)
growisofs -M /dev/dvd -R -J ファイル and/or ディレクトリ(群)

gcc
http://ftp.tsukuba.wide.ad.jp/software/gcc/

glibc確認、下記のコマンドを実行する。
ls -l /lib/libc-*

dnf -v grouplist

http://ftp.jaist.ac.jp/pub/Linux/

Macでisoイメージの作成。
ディスクユーティリティーのコマンドは以下の通り。 isoにしたいディレクトリをDIRの部分に指定する。
hdiutil makehybrid -iso -joliet -o sample.iso DIR

Fedora8 virtualbox guestaddインストール後、起動しない。
unable to load Selinux カーネルパニック 起動しない。
シングルモード起動時 selinux=0 singleで起動。
/etc/selinux/configを編集。
SELINUX=disabledに変更
再起動、guest addition toolが動きました。ありがとうございます。

ロック画面のまま、ログインウィンドウが表示されない場合は、
Ctrl + Alt + F1 でコマンドラインを表示

■共有フォルダ設定、VirtualboxのゲストOS上で
# gpasswd --add {ユーザ名} vboxsf
ユーザをvboxsfグループに追加します。

■VirtualBox共有フォルダ
ubuntu系
sudo nano /etc/modules
cat /etc/modules
# /etc/modules: kernel modules to load at boot time.
#
# This file contains the names of kernel modules that should be loaded
# at boot time, one per line. Lines beginning with "#" are ignored.
vboxsf
--------------

ゲストOSに$mkdir <マウントポイント名>
フォルダを作る。

$sudo mount.vboxsf <設定したホストOSでの共有ファイル名> /home/<ログインに使う名前>/<マウントポイント名>

■その他
tkinter確認
$ python -m Tkinter

iv intall
$ sudo apt install openimageio-tools
- | - | -

Lightflow C API sample cornell box

main8.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >

int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;
LfTransform trs;

list.Reset();
list << "trace-depth" << LfInt( 6 );
list << "radiosity-samples" << LfInt( 400 );
list << "radiosity-threshold" << 0.1;
list << "radiosity-reuse-distance" << 0.25, 0.4, 0.01;
list << "photon-count" << LfInt( 300000 );
list << "photon-clustering-count" << LfInt( 2000 ) << LfInt( 100 );
s->NewInterface( "default", list );

// the "trace-depth" attribute controls the maximal number of ray-traced
// light bounces.
// the "radiosity-depth" attribute controls the maximal number of
// radiosity iterations, that is to say the number of bounces of the indirect
// illumination.
// the "radiosity-samples" attribute sets the amount of rays that are
// used to sample the light space at every surface location. Normally
// values between 200 and 500 produce good results. Note that this parameter
// is very influent on the rendering time, since light sampling is one
// of the most time consuming tasks.
// "radiosity-threshold" sets the maximal error bound in the radiosity
// estimation. A value of 0.1 means that the error is allowed to be 10%
// of the real value.
// "radiosity-reuse-distance" sets the screen, maximum and minimum distance
// from different sampling locations. This parameter is the only one that
// must be set accordingly to the scene size. The smaller these values are,
// the better the result will be, but usually a good value for the
// screen distance is from 0.2 to 0.5, while a good value for the
// maximum distance is everything greater than one fifth of the length
// of the visible surfaces.
// In this case we are modeling a room with sides 2 unities long, hence
// a value of 0.4 will prove to be good enough. The minimum distance
// should be an order of magnitude less.
// should be an order of magnitude less.
// The "photon-count" parameter controls the amount of photons that are
// spread into the scene to compute the global illumination. Obviously
// more photons means better approximations and longer times.


list.Reset();
list << "position" << LfPoint( 0, 0, 0.98 );
list << "direction" << LfVector3( 0, 0, -1 );
list << "angle" << 0.0 << PI / 2.0;
list << "radius" << 0.05;
list << "samples" << LfInt( 7 );
list << "color" << LfColor( 8, 8, 8 );
s->LightOn( s->NewLight( "soft-conic", list ) );

// We simulate an area light with a conic light that produces soft
// shadows. The spreading angle of the light is set to 90 degrees
// (PI / 2 in radians) to obtain the same light distribution of a patch
// light source. We could also put a real "patch" light, with a well
// defined surface, but the computation times would have been longer.
// Check the class documentation to see how area lights work, and how
// fake soft shadows may be obtained with the "soft" and "soft-conic" types.


list.Reset();
list << "kc" << LfColor( 3, 3, 3 );
list << "shadowing" << 0.0;
LfInt neon = s->NewMaterial( "matte", list );

list.Reset();
list << "kdr" << LfColor( 0.9, 0.9, 0.9 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt whitewash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.8, 0.1, 0.1 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt redwash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.2, 0.3, 0.8 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt bluewash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.9, 0.9, 0.9 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
list << "visibility" << LfInt( 1 );
LfInt trnswash = s->NewMaterial( "generic", list );

list.Reset();
list << "fresnel" << LfInt( 1 );
list << "IOR" << 9.0;
list << "kr" << LfColor( 1, 1, 1 );
list << "kt" << LfColor( 1, 1, 1 );
list << "kd" << 0.0;
list << "km" << 0.02;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 0 );
list << "caustics" << LfInt( 2 ) << LfInt( 2 );
LfInt metal = s->NewMaterial( "physical", list );

list.Reset();
list << "fresnel" << LfInt( 1 );
list << "IOR" << 1.57;
list << "kdr" << LfColor( 0, 0, 0 );
list << "kdt" << LfColor( 0, 0, 0 );
list << "ksr" << LfColor( 1, 1, 1 ) << LfColor( 0.5, 0.8, 1 );
list << "kst" << LfColor( 1, 1, 1 ) << LfColor( 1, 0.6, 0.2 );
list << "kr" << LfColor( 1, 1, 1 );
list << "kt" << LfColor( 1, 1, 1 );
list << "km" << 0.02;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 0 );
list << "caustics" << LfInt( 2 ) << LfInt( 2 );
LfInt glass = s->NewMaterial( "generic", list );


s->MaterialBegin( whitewash );

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.995 ) << LfVector3( 0.25, -0.25, 0.995 )
<< LfVector3( -0.25, 0.25, 0.995 ) << LfVector3( 0.25, 0.25, 0.995 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 0.99 )
<< LfVector3( -0.25, 0.25, 1.00 ) << LfVector3( 0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( -0.25, -0.25, 1.00 )
<< LfVector3( 0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( 0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 1.00 )
<< LfVector3( 0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( -0.25, 0.25,
0.99 )
<< LfVector3( -0.25, -0.25, 1.00 ) << LfVector3( -0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( neon );

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 0.99 )
<< LfVector3( -0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 0.99 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( trnswash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( 1, -1, -1 )
<< LfVector3( -1, -1, 1 ) << LfVector3( 1, -1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( whitewash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( -1, 1, -1 )
<< LfVector3( 1, -1, -1 ) << LfVector3( 1, 1, -1 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -1, -1, 1 ) << LfVector3( 1, -1, 1 )
<< LfVector3( -1, 1, 1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -1, 1, -1 ) << LfVector3( -1, 1, 1 )
<< LfVector3( 1, 1, -1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( redwash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( -1, -1, 1 )
<< LfVector3( -1, 1, -1 ) << LfVector3( -1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( bluewash );

list.Reset();
list << "points"
<< LfVector3( 1, -1, -1 ) << LfVector3( 1, 1, -1 )
<< LfVector3( 1, -1, 1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();


s->MaterialBegin( glass );

s->TransformBegin( trs.Translation( LfVector3( -0.45, 0, -0.1 ) ) );

list.Reset();
list << "radius" << 0.35;
s->AddObject( s->NewObject( "sphere", list ) );

s->TransformEnd();

s->MaterialEnd();


s->MaterialBegin( metal );

s->TransformBegin( trs.Translation( LfVector3( 0.45, 0.4, -0.65 ) )
);

list.Reset();
list << "radius" << 0.35;
s->AddObject( s->NewObject( "sphere", list ) );

s->TransformEnd();

s->MaterialEnd();


list.Reset();
list << "file" << "cornell.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -2.99, 0 );
list << "aim" << LfPoint( 0, 0, 0 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 300, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main8.cpp -o simplescene8
$ ./simplescene8
$ convert cornell.tga cornell.jpg
$ eog cornell.jpg
cornell.jpg
Lightflow | - | -

Lightflow C API sample ocean

main6.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >
int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;
LfTransform trs;

// Specify some rendering settings. These values are used by
// all the built-in types, so they are grouped under a unique
// interface, named "default".
list.Reset();
list << "trace-depth" << LfInt( 5 );
list << "lighting-depth" << LfInt( 3 );
s->NewInterface( "default", list );

// Make a bright, bright light to model the sun.
list.Reset();
list << "position" << LfPoint( 0, 900, 100 );
list << "color" << LfColor( 60000.0, 60000.0, 60000.0 );
s->LightOn( s->NewLight( "point", list ) );


// Model the water waves with a fractal pattern.
s->TransformBegin( trs.Scaling( LfVector3( 10, 5, 5 ) ) );

list.Reset();
list << "basis" << "sin";
list << "scale" << 2.0;
list << "depth" << 0.1;
list << "turbulence.distortion" << 1.0;
list << "turbulence.omega" << 0.1 << 0.3;
list << "turbulence.lambda" << 2.0;
list << "turbulence.octaves" << LfInt( 5 );
LfInt waterbumps = s->NewPattern( "multifractal", list );

// the "basis" value describes the fractal basis, that here is set to
// "sin", as waves have a sinusoidal origin.
// "scale" represents the width of the waves. This factor is then
// multiplied by the scaling transform we put before.
// "depth" represents the depth of the waves, when used to displace a
// surface.
// the "turbulence." keywords are turbulence parameters, that are
// explained in the "multifractal" documentation.

s->TransformEnd();

// Model water with a material.
list.Reset();
list << "fresnel" << LfInt( 1 ) << LfFloat(0.3) << LfFloat(0.0);
list << "IOR" << 1.33;
list << "kr" << LfColor( 1, 1, 1 );
list << "kt" << LfColor( 1, 1, 1 );
list << "kd" << 0.0;
list << "km" << 0.03;
list << "shinyness" << 0.5;
list << "displacement" << waterbumps;
LfInt water = s->NewMaterial( "physical", list );

// the choosed type is "physical", because this provides physical
// parameters, very good to model liquids, glasses and metals.
// note the use of the waterbumps pattern as a displacement.


// Model the ocean fundals in a similar way.
list.Reset();
list << "basis" << "sin";
list << "scale" << 10.0;
list << "depth" << 0.5;
list << "turbulence.distortion" << 1.0;
list << "turbulence.omega" << 0.1 << 0.3;
list << "turbulence.lambda" << 2.0;
list << "turbulence.octaves" << LfInt( 5 );
LfInt earthbumps = s->NewPattern( "multifractal", list );

list.Reset();
list << "kr" << LfColor( 0.8, 0.75, 0.7 );
list << "displacement" << earthbumps;
LfInt earth = s->NewMaterial( "diffuse", list );


// Here starts the sky.
// It contains a lot of volumetric clouds, especially at the horizon,
// so it is a bit complex.

// Volumetric clouds are modeled with an interior and a pattern that modulates its density.
s->TransformBegin( trs.Scaling( LfVector3( 100, 100, 100 ) ) );
s->TransformBegin( trs.Translation( LfVector3( 0, 0, -0.5 ) ) );

list.Reset();
list << "value"
<< 0.0 << 1.0 << 1.0
<< 0.3 << 0.0 << 0.0;
list << "scale" << 1.0;
list << "turbulence.distortion" << 1.0;
list << "turbulence.omega" << 0.5 << 0.8;
list << "turbulence.lambda" << 2.0;
list << "turbulence.octaves" << LfInt( 3 );
LfInt cloudpattern = s->NewPattern( "multifractal", list );

// Make the output distribution go from 1 to 0.1 to model clouds.

s->TransformEnd();
s->TransformEnd();

list.Reset();
list << "kr" << LfColor( 2.0, 0.8, 0.4 );
list << "kaf" << LfColor( 0.6, 0.8, 0.4 ) * 0.035;
list << "density" << 1.0;
list << "density" << cloudpattern;
list << "sampling" << 0.07;
list << "shadow-caching" << LfPoint( -1000, -1000, -1 ) << LfPoint(1000, 1000, 100 );
list << "density-caching" << LfInt( 2048 ) << LfPoint( -1000, -1000, -1 ) << LfPoint( 1000, 1000, 100 );
list << "density-caching" << LfInt( 2048 ) << LfPoint( -1.2, -1.2, -1.2 ) << LfPoint( 1.2, 1.2, 1.2 );
LfInt cloudinterior = s->NewInterior( "cloud", list );

// Note that our scene will have a radius of 1000 unities, and our
// camera would be at its center, so with a sampling factor of 0.07 we
// allow 70 samples per ray: an enormous quantity! This will make our
// scene render slowly, but the caches will give a help. Obviously if
// you remove these volumetric clouds the rendering will be much faster.
// Here we don't care about speed however, since we want only to
// produce a single, astonishing image...


// Now model the fundal, a blue sky made of flat clouds that will be
// wrapped on a sphere.

list.Reset();
list << "color"
<< 0.2 << LfColor( 0.8, 0.9, 1.0 ) << LfColor( 0.8, 0.9, 1.0 )
<< 1.0 << LfColor( 0.2, 0.4, 0.9 ) << LfColor( 0.2, 0.4, 0.9 );
LfInt skypattern1 = s->NewPattern( "linear-v", list );

s->TransformBegin( trs.Scaling( LfVector3(80, 80, 10) ) );

list.Reset();
list << "color"
<< 0.2 << LfColor( 0.2, 0.4, 0.9 ) << LfColor( 0.2, 0.4, 0.9 )
<< 1.0 << LfColor( 0.2, 0.3, 0.7 ) << LfColor( 0.2, 0.3, 0.7 );
list << "scale" << 1.1;
list << "turbulence.distortion" << 1.0;
list << "turbulence.omega" << 0.5 << 0.8;
LfInt skypattern2 = s->NewPattern( "multifractal", list );

s->TransformEnd();

list.Reset();
list << "pattern" << skypattern1;
list << "gradient"
<< 0.3 << skypattern1 << skypattern1
<< 1.0 << skypattern2 << skypattern2;
LfInt skypattern = s->NewPattern( "blend", list );

// Note that we actually created two patterns, and we merged them
// together with a "blend".
// The first pattern is a linear gradient that will span the V
// direction of the parametric surface we will attach it to.
// In this case we will use it on a sphere, where the V direction is
// the one which connects the north and south poles (that is to say a
// line of constant U and varying V is a meridian).
// This gradient associates a color to each parallel of the sphere,
// going from bright blue near the horizon to dark blue near the
// azimuth.
// The second pattern is again a "multifractal", which we use to model
// very distant clouds. Note that we stretch it with a scaling, so that
// the clouds will look wide and thin.
// The "blend" pattern finally blends the two. It uses the pattern
// specified with "pattern" to mix more patterns. In particular it
// defines a pattern-gradient that smoothly interpolates between
// different patterns. In this case we use the linear pattern both to
// model the distribution of the gradient and to model the gradient
// itself.
// The numeric value of the linear pattern has not been specified
// (with a value-gradient), and so it goes from 0 to 1, as default.
// Thus the "blend" will make a transition that goes from a clear
// and bright sky near the horizon (at the V value of 0.3) to a cloudy
// sky near the azimuth (at the V value of 1.0).

// Create the sky material.
s->InteriorBegin( cloudinterior );

list.Reset();
list << "kc" << LfColor(1.0, 1.0, 1.0);
list << "kc" << skypattern;
list << "shadowing" << LfFloat(0.0);
LfInt sky = s->NewMaterial( "matte", list );

s->InteriorEnd();

// "matte" is a material made to create matte objects, that are not
// shaded by light, but that emit a uniform color. In this case this
// color is first set to white (1, 1, 1) and then scaled by the skypattern.
// The result will be the skypattern itself.


// Create a water disc.
s->MaterialBegin( water );

list.Reset();
list << "radius" << 1000.0;
s->AddObject( s->NewObject( "disc", list ));

s->MaterialEnd();


// Create an under-water disc made of earth.
s->TransformBegin( trs.Translation( LfVector3( 0, 0, -10 ) ) );

s->MaterialBegin( earth );

list.Reset();
list << "radius" << 1000.0;
s->AddObject( s->NewObject( "disc", list ));

s->MaterialEnd();

s->TransformEnd();


// Create the sky sphere.
s->TransformBegin( trs.Scaling( LfVector3( 1, 1, 0.1 ) ) );

s->MaterialBegin( sky );

list.Reset();
list << "radius" << 1000.0;
s->AddObject( s->NewObject( "sphere", list ));

s->MaterialEnd();

s->TransformEnd();


list.Reset();
list << "file" << "ocean.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -8, 4 );
list << "aim" << LfPoint( 0, 0, 4 );
list << "aa-samples" << LfInt( 2 ) << LfInt( 5 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 400, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main6.cpp -o simplescene6
$ ./simplescene6
$ convert ocean.tga ocean.jpg
$ eog ocean.jpg
ocean.jpg
Lightflow | - | -

Lightflow C API sample cloud

main5.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >

void main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;

list.Reset();
list << "direction" << LfVector3( 8.0, 5.0, -6.0 );
list << "color" << LfColor( 1.0, 1.0, 1.0 );
s->LightOn( s->NewLight( "directional", list ) );


list.Reset();
list << "value"
<< 0.3 << 1.0 << 1.0
<< 0.5 << 0.0 << 0.0;
list << "scale" << 1.0;
list << "turbulence.omega" << 0.55;
list << "turbulence.lambda" << 1.8;
list << "turbulence.octaves" << LfInt( 6 );
LfInt cloudpattern1 = s->NewPattern( "granite", list );

// Make a granite-like volumetric pattern.
// Note the keyword "value", followed by two rows of three parameters
// each.
// This is an example of value-gradient. A gradient is a function which
// interpolates many values, which may be numbers, colors, or entire
// patterns and materials.
// By convention numeric gradients are called value-gradients, color ones
// are named color-gradients and so on.
// As a function a gradient associates a value to a real variable.
// You can imagine it in cartesian coordinates, putting the variable on
// the abscissas and the associated value on the ordinates.
// Here the first expected argument is the abscissa at which the value
// of the function is specified, then the value follows. The value is
// specified both at the right and at the left of the abscissa in order
// to model discontinuities, so it is composed by two numbers.
// You can specify how many abscissas (and values) you want.
// This gradient is used to model the output of our fractal pattern,
// that we will use to describe the spatial density of the cloud.
// Here the gradient smoothly blends from the value of 1 at the point 0.3,
// to the value of 0 at the point 0.5.
// Normally the output would be a value between 0 and 1, but we
// make it droppoff rapidly from 1 to 0 to model masses of clouds that
// are denser at their center and that disappear at their boundaries.

list.Reset();
list << "value"
<< 0.8 << 1.0 << 1.0
<< 1.0 << 0.0 << 0.0;
list << "scale" << 1.2;
LfInt cloudpattern2 = s->NewPattern( "radial", list );

// Make a radial pattern, that is to say a spherical figure that is
// dense at its center and that has zero density at its border.
// This sphere has a radius of 1.2.

list.Reset();
list << "patterns" << cloudpattern1 << cloudpattern2;
LfInt cloudpattern = s->NewPattern( "compose", list );

// Compose the two patterns. Here the output of cloudpattern1 is used
// as the input of cloudpattern2. Since the radial pattern uses its
// input to scale its output, the result will be a sphere containing a
// granitic texture which diminishes its intensity near the border.

list.Reset();
list << "kr" << LfColor( 0.7, 0.85, 1.0 );
list << "kaf" << LfColor( 0.2, 0.35, 0.5 );
list << "density" << 1.0;
list << "density" << cloudpattern;
list << "sampling" << 20.0;
list << "shadow-caching" << LfPoint( -1.2, -1.2, -1.2 ) << LfPoint( 1.2, 1.2, 1.2 );
list << "density-caching" << LfInt( 2048 ) << LfPoint( -1.2, -1.2, -1.2 ) << LfPoint( 1.2, 1.2, 1.2 );
LfInt cloudinterior = s->NewInterior( "cloud", list );

// Here you should note how we described density.
// It has been specified with a single value of 1 and then with the
// pattern we modeled before. The value of 1 will be used as a input to
// cloudpattern1, which will scale its output by this factor. In
// this case there will be no scaling, and the output will go from 1 to
// 0, as we stated above.
// The "shadow-caching" and "density-caching" attributes specify the use of
// two different caching mechanisms that will be used to speed-up
// computations. They both require a bounding box where to work, and
// the density cache also requires the maximum allowed memory
// occupancy, which is expressed in Kb (here 2048, i.e. 2 Mb).
// The "sampling" value specifies how many samples will be taken into a
// segment long one.

s->InteriorBegin( cloudinterior );

list.Reset();
LfInt cloud = s->NewMaterial( "transparent", list );

s->InteriorEnd();


s->MaterialBegin( cloud );

list.Reset();
list << "radius" << 1.2;
s->AddObject( s->NewObject( "sphere", list ) );

s->MaterialEnd();


list.Reset();
list << "file" << "cloud.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -4, 0 );
list << "aim" << LfPoint( 0, 0, 0 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 300, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main5.cpp -o simplescene5
$ ./simplescene5
$ convert cloud.tga cloud.jpg
$ eog cloud.jpg
cloud.jpg
Lightflow | - | -

Lightflow C API sample lights

main4.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >

int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;
LfTransform trs;

list.Reset();
list << "position" << LfPoint( 4.0, -6.0, -5.0 );
list << "color" << LfColor( 200.0, 200.0, 200.0 );
s->LightOn( s->NewLight( "point", list ) );

list.Reset();
list << "position" << LfPoint( -7.5, -6.0, 2.0 );
list << "color" << LfColor( 300.0, 150.0, 150.0 );
LfInt light1 = s->NewLight( "point", list );

list.Reset();
list << "position" << LfPoint( -2.0, 0.0, 8.0 );
list << "color" << LfColor( 150.0, 300.0, 150.0 );
LfInt light2 = s->NewLight( "point", list );

list.Reset();
list << "position" << LfPoint( 8.0, -6.0, 5.0 );
list << "color" << LfColor( 150.0, 150.0, 300.0 );
LfInt light3 = s->NewLight( "point", list );


s->LightBegin();
s->LightOn( light1 );

list.Reset();
list << "ka" << LfColor( 0.1, 0.1, 0.1 );
list << "kc" << LfColor( 1, 1, 1 );
list << "kd" << 0.5;
list << "km" << 0.1;
LfInt plastic1 = s->NewMaterial( "standard", list );

s->LightEnd();

s->LightBegin();
s->LightOn( light2 );

list.Reset();
list << "ka" << LfColor( 0.1, 0.1, 0.1 );
list << "kc" << LfColor( 1, 1, 1 );
list << "kd" << 0.5;
list << "km" << 0.1;
LfInt plastic2 = s->NewMaterial( "standard", list );

s->LightEnd();

s->LightBegin();
s->LightOn( light3 );

list.Reset();
list << "ka" << LfColor( 0.1, 0.1, 0.1 );
list << "kc" << LfColor( 1, 1, 1 );
list << "kd" << 0.5;
list << "km" << 0.1;
LfInt plastic3 = s->NewMaterial( "standard", list );

s->LightEnd();


s->TransformBegin( trs.Translation( LfVector3( -2.0, 0, 0 ) ) );

s->MaterialBegin( plastic1 );

list.Reset();
list << "radius" << 1.0;
s->AddObject( s->NewObject( "sphere", list ) );

s->MaterialEnd();

s->TransformEnd();


s->MaterialBegin( plastic2 );

list.Reset();
list << "radius" << 1.0;
s->AddObject( s->NewObject( "sphere", list ) );

s->MaterialEnd();


s->TransformBegin( trs.Translation( LfVector3( 2.0, 0, 0 ) ) );

s->MaterialBegin( plastic3 );

list.Reset();
list << "radius" << 1.0;
s->AddObject( s->NewObject( "sphere", list ) );

s->MaterialEnd();

s->TransformEnd();


list.Reset();
list << "file" << "lights.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -4, 0 );
list << "aim" << LfPoint( 0, 0, 0 );
list << "fov" << atan( 0.5 / 0.75 )*2.0;
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 300, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main4.cpp -o simplescene4
$ ./simplescene4
$ convert lights.tga lights.jpg
$ eog lights.jpg
lights.jpg
Lightflow | - | -

Lightflow C API sample ball3

main3.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >

int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;

list.Reset();
list << "position" << LfPoint( 5.0, -5.0, 4.0 );
list << "color" << LfColor( 300.0, 300.0, 300.0 );
s->LightOn( s->NewLight( "point", list ) );


list.Reset();
list << "kr" << LfColor( 1.0, 0.9, 0.8 );
list << "kaf" << 0.3;
list << "density" << 0.3;
list << "sampling" << 40.0;
list << "shadow-caching" << LfPoint( -1.2, -1.2, -1.2 ) << LfPoint(
1.2, 1.2, 1.2 );
LfInt gas = s->NewInterior( "dust", list );

s->InteriorBegin( gas );

list.Reset();
LfInt cloud = s->NewMaterial( "transparent", list );

s->InteriorEnd();


s->MaterialBegin( cloud );

list.Reset();
list << "radius" << 1.2;
s->AddObject( s->NewObject( "sphere", list ) );

s->MaterialEnd();


list.Reset();
list << "ka" << LfColor( 0, 0, 0.5 );
list << "kc" << LfColor( 1, 0.5, 0.5 );
list << "kd" << 0.5;
list << "km" << 0.1;
LfInt plastic = s->NewMaterial( "standard", list );

s->MaterialBegin( plastic );

list.Reset();
list << "radius" << 0.5;
s->AddObject( s->NewObject( "sphere", list ) );

s->MaterialEnd();


list.Reset();
list << "file" << "ball3.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -4, 0 );
list << "aim" << LfPoint( 0, 0, 0 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 300, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main3.cpp -o simplescene3
$ ./simplescene3
$ convert ball3.tga ball3.jpg
$ eog ball3.jpg
ball3.jpg
Lightflow | - | -

Lightflow C API sample ball2

2018/10/22
sample ball2
main2.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >

int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;

list.Reset();
list << "position" << LfPoint( 5.0, -5.0, 4.0 );
list << "color" << LfColor( 300.0, 300.0, 300.0 );
s->LightOn( s->NewLight( "point", list ) );

list.Reset();
list << "basis" << "sin";
list << "scale" << 0.6;
list << "depth" << 0.2;
list << "turbulence.omega" << 0.5 << 0.7;
list << "turbulence.octaves" << LfInt( 6 );
LfInt bump = s->NewPattern( "multifractal", list );

list.Reset();
list << "ka" << LfColor( 0, 0, 0.05 );
list << "kc" << LfColor( 1, 1, 1 );
list << "kd" << 0.5;
list << "km" << 0.1;
list << "displacement" << bump;
LfInt plastic = s->NewMaterial( "standard", list );


s->MaterialBegin( plastic );

list.Reset();
list << "radius" << 1.0;
LfInt sphere = s->NewObject( "sphere", list );

list.Reset();
list << "surfaces" << sphere;
list << "tolerance" << 0.02 << 0.1 << 0.05;
s->AddObject( s->NewObject( "surface-engine", list ) );

s->MaterialEnd();


list.Reset();
list << "file" << "ball2.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -4, 0 );
list << "aim" << LfPoint( 0, 0, 0 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 300, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main2.cpp -o simplescene2
$ ./simplescene2
$ convert ball2.tga ball2.jpg
$ eog ball2.jpg
ball2.jpg
main22.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >

int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;

list.Reset();
list << "position" << LfPoint( 5.0, -5.0, 4.0 );
list << "color" << LfColor( 300.0, 300.0, 300.0 );
s->LightOn( s->NewLight( "point", list ) );

list.Reset();
list << "basis" << "sin";
list << "scale" << 0.6;
list << "depth" << 0.2;
list << "turbulence.omega" << 0.5 << 0.7;
list << "turbulence.octaves" << LfInt( 6 );
LfInt bump = s->NewPattern( "multifractal", list );

list.Reset();
list << "kr" << LfVector3(0.3,0.3,0.5);
list << "kd" << 0.3;
list << "km" << 0.3;
list << "shinyness" << 0.8;
list << "fresnel" << LfInt(1) << LfFloat(0.5) << LfFloat(0.5);
list << "caustics" << LfInt(1) << LfInt(1);
list << "displacement" << bump;
LfInt bumpmetal = s->NewMaterial( "physical", list );


s->MaterialBegin( bumpmetal );

list.Reset();
list << "radius" << 1.0;
LfInt sphere = s->NewObject( "sphere", list );

list.Reset();
list << "surfaces" << sphere;
list << "tolerance" << 0.02 << 0.1 << 0.05;
s->AddObject( s->NewObject( "surface-engine", list ) );

s->MaterialEnd();


list.Reset();
list << "file" << "ball2.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -4, 0 );
list << "aim" << LfPoint( 0, 0, 0 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 300, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main22.cpp -o simplescene22
$ ./simplescene22
$ convert ball2.tga ball2.jpg
$ eog ball2.jpg
ball2.jpg
Lightflow | - | -
1/53 >>