<< Lightflow C API sample ocean 戻る Linux設定メモ >>

Lightflow C API sample cornell box

main8.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >

int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;
LfTransform trs;

list.Reset();
list << "trace-depth" << LfInt( 6 );
list << "radiosity-samples" << LfInt( 400 );
list << "radiosity-threshold" << 0.1;
list << "radiosity-reuse-distance" << 0.25, 0.4, 0.01;
list << "photon-count" << LfInt( 300000 );
list << "photon-clustering-count" << LfInt( 2000 ) << LfInt( 100 );
s->NewInterface( "default", list );

// the "trace-depth" attribute controls the maximal number of ray-traced
// light bounces.
// the "radiosity-depth" attribute controls the maximal number of
// radiosity iterations, that is to say the number of bounces of the indirect
// illumination.
// the "radiosity-samples" attribute sets the amount of rays that are
// used to sample the light space at every surface location. Normally
// values between 200 and 500 produce good results. Note that this parameter
// is very influent on the rendering time, since light sampling is one
// of the most time consuming tasks.
// "radiosity-threshold" sets the maximal error bound in the radiosity
// estimation. A value of 0.1 means that the error is allowed to be 10%
// of the real value.
// "radiosity-reuse-distance" sets the screen, maximum and minimum distance
// from different sampling locations. This parameter is the only one that
// must be set accordingly to the scene size. The smaller these values are,
// the better the result will be, but usually a good value for the
// screen distance is from 0.2 to 0.5, while a good value for the
// maximum distance is everything greater than one fifth of the length
// of the visible surfaces.
// In this case we are modeling a room with sides 2 unities long, hence
// a value of 0.4 will prove to be good enough. The minimum distance
// should be an order of magnitude less.
// should be an order of magnitude less.
// The "photon-count" parameter controls the amount of photons that are
// spread into the scene to compute the global illumination. Obviously
// more photons means better approximations and longer times.


list.Reset();
list << "position" << LfPoint( 0, 0, 0.98 );
list << "direction" << LfVector3( 0, 0, -1 );
list << "angle" << 0.0 << PI / 2.0;
list << "radius" << 0.05;
list << "samples" << LfInt( 7 );
list << "color" << LfColor( 8, 8, 8 );
s->LightOn( s->NewLight( "soft-conic", list ) );

// We simulate an area light with a conic light that produces soft
// shadows. The spreading angle of the light is set to 90 degrees
// (PI / 2 in radians) to obtain the same light distribution of a patch
// light source. We could also put a real "patch" light, with a well
// defined surface, but the computation times would have been longer.
// Check the class documentation to see how area lights work, and how
// fake soft shadows may be obtained with the "soft" and "soft-conic" types.


list.Reset();
list << "kc" << LfColor( 3, 3, 3 );
list << "shadowing" << 0.0;
LfInt neon = s->NewMaterial( "matte", list );

list.Reset();
list << "kdr" << LfColor( 0.9, 0.9, 0.9 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt whitewash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.8, 0.1, 0.1 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt redwash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.2, 0.3, 0.8 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt bluewash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.9, 0.9, 0.9 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
list << "visibility" << LfInt( 1 );
LfInt trnswash = s->NewMaterial( "generic", list );

list.Reset();
list << "fresnel" << LfInt( 1 );
list << "IOR" << 9.0;
list << "kr" << LfColor( 1, 1, 1 );
list << "kt" << LfColor( 1, 1, 1 );
list << "kd" << 0.0;
list << "km" << 0.02;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 0 );
list << "caustics" << LfInt( 2 ) << LfInt( 2 );
LfInt metal = s->NewMaterial( "physical", list );

list.Reset();
list << "fresnel" << LfInt( 1 );
list << "IOR" << 1.57;
list << "kdr" << LfColor( 0, 0, 0 );
list << "kdt" << LfColor( 0, 0, 0 );
list << "ksr" << LfColor( 1, 1, 1 ) << LfColor( 0.5, 0.8, 1 );
list << "kst" << LfColor( 1, 1, 1 ) << LfColor( 1, 0.6, 0.2 );
list << "kr" << LfColor( 1, 1, 1 );
list << "kt" << LfColor( 1, 1, 1 );
list << "km" << 0.02;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 0 );
list << "caustics" << LfInt( 2 ) << LfInt( 2 );
LfInt glass = s->NewMaterial( "generic", list );


s->MaterialBegin( whitewash );

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.995 ) << LfVector3( 0.25, -0.25, 0.995 )
<< LfVector3( -0.25, 0.25, 0.995 ) << LfVector3( 0.25, 0.25, 0.995 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 0.99 )
<< LfVector3( -0.25, 0.25, 1.00 ) << LfVector3( 0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( -0.25, -0.25, 1.00 )
<< LfVector3( 0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( 0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 1.00 )
<< LfVector3( 0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( -0.25, 0.25,
0.99 )
<< LfVector3( -0.25, -0.25, 1.00 ) << LfVector3( -0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( neon );

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 0.99 )
<< LfVector3( -0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 0.99 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( trnswash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( 1, -1, -1 )
<< LfVector3( -1, -1, 1 ) << LfVector3( 1, -1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( whitewash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( -1, 1, -1 )
<< LfVector3( 1, -1, -1 ) << LfVector3( 1, 1, -1 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -1, -1, 1 ) << LfVector3( 1, -1, 1 )
<< LfVector3( -1, 1, 1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -1, 1, -1 ) << LfVector3( -1, 1, 1 )
<< LfVector3( 1, 1, -1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( redwash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( -1, -1, 1 )
<< LfVector3( -1, 1, -1 ) << LfVector3( -1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( bluewash );

list.Reset();
list << "points"
<< LfVector3( 1, -1, -1 ) << LfVector3( 1, 1, -1 )
<< LfVector3( 1, -1, 1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();


s->MaterialBegin( glass );

s->TransformBegin( trs.Translation( LfVector3( -0.45, 0, -0.1 ) ) );

list.Reset();
list << "radius" << 0.35;
s->AddObject( s->NewObject( "sphere", list ) );

s->TransformEnd();

s->MaterialEnd();


s->MaterialBegin( metal );

s->TransformBegin( trs.Translation( LfVector3( 0.45, 0.4, -0.65 ) )
);

list.Reset();
list << "radius" << 0.35;
s->AddObject( s->NewObject( "sphere", list ) );

s->TransformEnd();

s->MaterialEnd();


list.Reset();
list << "file" << "cornell.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -2.99, 0 );
list << "aim" << LfPoint( 0, 0, 0 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 300, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main8.cpp -o simplescene8
$ ./simplescene8
$ convert cornell.tga cornell.jpg
$ eog cornell.jpg
cornell.jpg
  • -
  • -

<< Lightflow C API sample ocean 戻る Linux設定メモ >>