Rendering学習日記

日々、3DCGの世界は進歩しています。勉強して理解したことをまとめていきます。RenderMan互換レンダラーやグローバル・イルミネーション。いろんなことに好奇心を持って、面白くなる。目指せShader書き!!
ありがとうございます。

Lightflow C API sample ocean

main6.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >
int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;
LfTransform trs;

// Specify some rendering settings. These values are used by
// all the built-in types, so they are grouped under a unique
// interface, named "default".
list.Reset();
list << "trace-depth" << LfInt( 5 );
list << "lighting-depth" << LfInt( 3 );
s->NewInterface( "default", list );

// Make a bright, bright light to model the sun.
list.Reset();
list << "position" << LfPoint( 0, 900, 100 );
list << "color" << LfColor( 60000.0, 60000.0, 60000.0 );
s->LightOn( s->NewLight( "point", list ) );


// Model the water waves with a fractal pattern.
s->TransformBegin( trs.Scaling( LfVector3( 10, 5, 5 ) ) );

list.Reset();
list << "basis" << "sin";
list << "scale" << 2.0;
list << "depth" << 0.1;
list << "turbulence.distortion" << 1.0;
list << "turbulence.omega" << 0.1 << 0.3;
list << "turbulence.lambda" << 2.0;
list << "turbulence.octaves" << LfInt( 5 );
LfInt waterbumps = s->NewPattern( "multifractal", list );

// the "basis" value describes the fractal basis, that here is set to
// "sin", as waves have a sinusoidal origin.
// "scale" represents the width of the waves. This factor is then
// multiplied by the scaling transform we put before.
// "depth" represents the depth of the waves, when used to displace a
// surface.
// the "turbulence." keywords are turbulence parameters, that are
// explained in the "multifractal" documentation.

s->TransformEnd();

// Model water with a material.
list.Reset();
list << "fresnel" << LfInt( 1 ) << LfFloat(0.3) << LfFloat(0.0);
list << "IOR" << 1.33;
list << "kr" << LfColor( 1, 1, 1 );
list << "kt" << LfColor( 1, 1, 1 );
list << "kd" << 0.0;
list << "km" << 0.03;
list << "shinyness" << 0.5;
list << "displacement" << waterbumps;
LfInt water = s->NewMaterial( "physical", list );

// the choosed type is "physical", because this provides physical
// parameters, very good to model liquids, glasses and metals.
// note the use of the waterbumps pattern as a displacement.


// Model the ocean fundals in a similar way.
list.Reset();
list << "basis" << "sin";
list << "scale" << 10.0;
list << "depth" << 0.5;
list << "turbulence.distortion" << 1.0;
list << "turbulence.omega" << 0.1 << 0.3;
list << "turbulence.lambda" << 2.0;
list << "turbulence.octaves" << LfInt( 5 );
LfInt earthbumps = s->NewPattern( "multifractal", list );

list.Reset();
list << "kr" << LfColor( 0.8, 0.75, 0.7 );
list << "displacement" << earthbumps;
LfInt earth = s->NewMaterial( "diffuse", list );


// Here starts the sky.
// It contains a lot of volumetric clouds, especially at the horizon,
// so it is a bit complex.

// Volumetric clouds are modeled with an interior and a pattern that modulates its density.
s->TransformBegin( trs.Scaling( LfVector3( 100, 100, 100 ) ) );
s->TransformBegin( trs.Translation( LfVector3( 0, 0, -0.5 ) ) );

list.Reset();
list << "value"
<< 0.0 << 1.0 << 1.0
<< 0.3 << 0.0 << 0.0;
list << "scale" << 1.0;
list << "turbulence.distortion" << 1.0;
list << "turbulence.omega" << 0.5 << 0.8;
list << "turbulence.lambda" << 2.0;
list << "turbulence.octaves" << LfInt( 3 );
LfInt cloudpattern = s->NewPattern( "multifractal", list );

// Make the output distribution go from 1 to 0.1 to model clouds.

s->TransformEnd();
s->TransformEnd();

list.Reset();
list << "kr" << LfColor( 2.0, 0.8, 0.4 );
list << "kaf" << LfColor( 0.6, 0.8, 0.4 ) * 0.035;
list << "density" << 1.0;
list << "density" << cloudpattern;
list << "sampling" << 0.07;
list << "shadow-caching" << LfPoint( -1000, -1000, -1 ) << LfPoint(1000, 1000, 100 );
list << "density-caching" << LfInt( 2048 ) << LfPoint( -1000, -1000, -1 ) << LfPoint( 1000, 1000, 100 );
list << "density-caching" << LfInt( 2048 ) << LfPoint( -1.2, -1.2, -1.2 ) << LfPoint( 1.2, 1.2, 1.2 );
LfInt cloudinterior = s->NewInterior( "cloud", list );

// Note that our scene will have a radius of 1000 unities, and our
// camera would be at its center, so with a sampling factor of 0.07 we
// allow 70 samples per ray: an enormous quantity! This will make our
// scene render slowly, but the caches will give a help. Obviously if
// you remove these volumetric clouds the rendering will be much faster.
// Here we don't care about speed however, since we want only to
// produce a single, astonishing image...


// Now model the fundal, a blue sky made of flat clouds that will be
// wrapped on a sphere.

list.Reset();
list << "color"
<< 0.2 << LfColor( 0.8, 0.9, 1.0 ) << LfColor( 0.8, 0.9, 1.0 )
<< 1.0 << LfColor( 0.2, 0.4, 0.9 ) << LfColor( 0.2, 0.4, 0.9 );
LfInt skypattern1 = s->NewPattern( "linear-v", list );

s->TransformBegin( trs.Scaling( LfVector3(80, 80, 10) ) );

list.Reset();
list << "color"
<< 0.2 << LfColor( 0.2, 0.4, 0.9 ) << LfColor( 0.2, 0.4, 0.9 )
<< 1.0 << LfColor( 0.2, 0.3, 0.7 ) << LfColor( 0.2, 0.3, 0.7 );
list << "scale" << 1.1;
list << "turbulence.distortion" << 1.0;
list << "turbulence.omega" << 0.5 << 0.8;
LfInt skypattern2 = s->NewPattern( "multifractal", list );

s->TransformEnd();

list.Reset();
list << "pattern" << skypattern1;
list << "gradient"
<< 0.3 << skypattern1 << skypattern1
<< 1.0 << skypattern2 << skypattern2;
LfInt skypattern = s->NewPattern( "blend", list );

// Note that we actually created two patterns, and we merged them
// together with a "blend".
// The first pattern is a linear gradient that will span the V
// direction of the parametric surface we will attach it to.
// In this case we will use it on a sphere, where the V direction is
// the one which connects the north and south poles (that is to say a
// line of constant U and varying V is a meridian).
// This gradient associates a color to each parallel of the sphere,
// going from bright blue near the horizon to dark blue near the
// azimuth.
// The second pattern is again a "multifractal", which we use to model
// very distant clouds. Note that we stretch it with a scaling, so that
// the clouds will look wide and thin.
// The "blend" pattern finally blends the two. It uses the pattern
// specified with "pattern" to mix more patterns. In particular it
// defines a pattern-gradient that smoothly interpolates between
// different patterns. In this case we use the linear pattern both to
// model the distribution of the gradient and to model the gradient
// itself.
// The numeric value of the linear pattern has not been specified
// (with a value-gradient), and so it goes from 0 to 1, as default.
// Thus the "blend" will make a transition that goes from a clear
// and bright sky near the horizon (at the V value of 0.3) to a cloudy
// sky near the azimuth (at the V value of 1.0).

// Create the sky material.
s->InteriorBegin( cloudinterior );

list.Reset();
list << "kc" << LfColor(1.0, 1.0, 1.0);
list << "kc" << skypattern;
list << "shadowing" << LfFloat(0.0);
LfInt sky = s->NewMaterial( "matte", list );

s->InteriorEnd();

// "matte" is a material made to create matte objects, that are not
// shaded by light, but that emit a uniform color. In this case this
// color is first set to white (1, 1, 1) and then scaled by the skypattern.
// The result will be the skypattern itself.


// Create a water disc.
s->MaterialBegin( water );

list.Reset();
list << "radius" << 1000.0;
s->AddObject( s->NewObject( "disc", list ));

s->MaterialEnd();


// Create an under-water disc made of earth.
s->TransformBegin( trs.Translation( LfVector3( 0, 0, -10 ) ) );

s->MaterialBegin( earth );

list.Reset();
list << "radius" << 1000.0;
s->AddObject( s->NewObject( "disc", list ));

s->MaterialEnd();

s->TransformEnd();


// Create the sky sphere.
s->TransformBegin( trs.Scaling( LfVector3( 1, 1, 0.1 ) ) );

s->MaterialBegin( sky );

list.Reset();
list << "radius" << 1000.0;
s->AddObject( s->NewObject( "sphere", list ));

s->MaterialEnd();

s->TransformEnd();


list.Reset();
list << "file" << "ocean.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -8, 4 );
list << "aim" << LfPoint( 0, 0, 4 );
list << "aa-samples" << LfInt( 2 ) << LfInt( 5 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 400, 300 );

delete s;
}

$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main6.cpp -o simplescene6
$ ./simplescene6
$ convert ocean.tga ocean.jpg
$ eog ocean.jpg
ocean.jpg
  • -
  • -

Lightflow C API sample cornell box

main8.cpp
#includeの両側に半角スペースが入っています。


#include < Lightflow/LfLocalSceneProxy.h >

int main()
{
LfLocalSceneProxy* s = new LfLocalSceneProxy();
LfArgList list;
LfTransform trs;

list.Reset();
list << "trace-depth" << LfInt( 6 );
list << "radiosity-samples" << LfInt( 400 );
list << "radiosity-threshold" << 0.1;
list << "radiosity-reuse-distance" << 0.25, 0.4, 0.01;
list << "photon-count" << LfInt( 300000 );
list << "photon-clustering-count" << LfInt( 2000 ) << LfInt( 100 );
s->NewInterface( "default", list );

// the "trace-depth" attribute controls the maximal number of ray-traced
// light bounces.
// the "radiosity-depth" attribute controls the maximal number of
// radiosity iterations, that is to say the number of bounces of the indirect
// illumination.
// the "radiosity-samples" attribute sets the amount of rays that are
// used to sample the light space at every surface location. Normally
// values between 200 and 500 produce good results. Note that this parameter
// is very influent on the rendering time, since light sampling is one
// of the most time consuming tasks.
// "radiosity-threshold" sets the maximal error bound in the radiosity
// estimation. A value of 0.1 means that the error is allowed to be 10%
// of the real value.
// "radiosity-reuse-distance" sets the screen, maximum and minimum distance
// from different sampling locations. This parameter is the only one that
// must be set accordingly to the scene size. The smaller these values are,
// the better the result will be, but usually a good value for the
// screen distance is from 0.2 to 0.5, while a good value for the
// maximum distance is everything greater than one fifth of the length
// of the visible surfaces.
// In this case we are modeling a room with sides 2 unities long, hence
// a value of 0.4 will prove to be good enough. The minimum distance
// should be an order of magnitude less.
// should be an order of magnitude less.
// The "photon-count" parameter controls the amount of photons that are
// spread into the scene to compute the global illumination. Obviously
// more photons means better approximations and longer times.


list.Reset();
list << "position" << LfPoint( 0, 0, 0.98 );
list << "direction" << LfVector3( 0, 0, -1 );
list << "angle" << 0.0 << PI / 2.0;
list << "radius" << 0.05;
list << "samples" << LfInt( 7 );
list << "color" << LfColor( 8, 8, 8 );
s->LightOn( s->NewLight( "soft-conic", list ) );

// We simulate an area light with a conic light that produces soft
// shadows. The spreading angle of the light is set to 90 degrees
// (PI / 2 in radians) to obtain the same light distribution of a patch
// light source. We could also put a real "patch" light, with a well
// defined surface, but the computation times would have been longer.
// Check the class documentation to see how area lights work, and how
// fake soft shadows may be obtained with the "soft" and "soft-conic" types.


list.Reset();
list << "kc" << LfColor( 3, 3, 3 );
list << "shadowing" << 0.0;
LfInt neon = s->NewMaterial( "matte", list );

list.Reset();
list << "kdr" << LfColor( 0.9, 0.9, 0.9 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt whitewash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.8, 0.1, 0.1 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt redwash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.2, 0.3, 0.8 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
LfInt bluewash = s->NewMaterial( "generic", list );

list.Reset();
list << "kdr" << LfColor( 0.9, 0.9, 0.9 );
list << "ksr" << LfColor( 0.5, 0.5, 0.5 );
list << "km" << 0.07;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 1 );
list << "caustics" << LfInt( 0 ) << LfInt( 0 );
list << "visibility" << LfInt( 1 );
LfInt trnswash = s->NewMaterial( "generic", list );

list.Reset();
list << "fresnel" << LfInt( 1 );
list << "IOR" << 9.0;
list << "kr" << LfColor( 1, 1, 1 );
list << "kt" << LfColor( 1, 1, 1 );
list << "kd" << 0.0;
list << "km" << 0.02;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 0 );
list << "caustics" << LfInt( 2 ) << LfInt( 2 );
LfInt metal = s->NewMaterial( "physical", list );

list.Reset();
list << "fresnel" << LfInt( 1 );
list << "IOR" << 1.57;
list << "kdr" << LfColor( 0, 0, 0 );
list << "kdt" << LfColor( 0, 0, 0 );
list << "ksr" << LfColor( 1, 1, 1 ) << LfColor( 0.5, 0.8, 1 );
list << "kst" << LfColor( 1, 1, 1 ) << LfColor( 1, 0.6, 0.2 );
list << "kr" << LfColor( 1, 1, 1 );
list << "kt" << LfColor( 1, 1, 1 );
list << "km" << 0.02;
list << "shinyness" << 1.0;
list << "radiosity" << LfInt( 0 );
list << "caustics" << LfInt( 2 ) << LfInt( 2 );
LfInt glass = s->NewMaterial( "generic", list );


s->MaterialBegin( whitewash );

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.995 ) << LfVector3( 0.25, -0.25, 0.995 )
<< LfVector3( -0.25, 0.25, 0.995 ) << LfVector3( 0.25, 0.25, 0.995 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 0.99 )
<< LfVector3( -0.25, 0.25, 1.00 ) << LfVector3( 0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( -0.25, -0.25, 1.00 )
<< LfVector3( 0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( 0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 1.00 )
<< LfVector3( 0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( -0.25, 0.25,
0.99 )
<< LfVector3( -0.25, -0.25, 1.00 ) << LfVector3( -0.25, 0.25, 1.00 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( neon );

list.Reset();
list << "points"
<< LfVector3( -0.25, -0.25, 0.99 ) << LfVector3( 0.25, -0.25, 0.99 )
<< LfVector3( -0.25, 0.25, 0.99 ) << LfVector3( 0.25, 0.25, 0.99 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( trnswash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( 1, -1, -1 )
<< LfVector3( -1, -1, 1 ) << LfVector3( 1, -1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( whitewash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( -1, 1, -1 )
<< LfVector3( 1, -1, -1 ) << LfVector3( 1, 1, -1 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -1, -1, 1 ) << LfVector3( 1, -1, 1 )
<< LfVector3( -1, 1, 1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

list.Reset();
list << "points"
<< LfVector3( -1, 1, -1 ) << LfVector3( -1, 1, 1 )
<< LfVector3( 1, 1, -1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( redwash );

list.Reset();
list << "points"
<< LfVector3( -1, -1, -1 ) << LfVector3( -1, -1, 1 )
<< LfVector3( -1, 1, -1 ) << LfVector3( -1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();

s->MaterialBegin( bluewash );

list.Reset();
list << "points"
<< LfVector3( 1, -1, -1 ) << LfVector3( 1, 1, -1 )
<< LfVector3( 1, -1, 1 ) << LfVector3( 1, 1, 1 );
s->AddObject( s->NewObject( "patch", list ));

s->MaterialEnd();


s->MaterialBegin( glass );

s->TransformBegin( trs.Translation( LfVector3( -0.45, 0, -0.1 ) ) );

list.Reset();
list << "radius" << 0.35;
s->AddObject( s->NewObject( "sphere", list ) );

s->TransformEnd();

s->MaterialEnd();


s->MaterialBegin( metal );

s->TransformBegin( trs.Translation( LfVector3( 0.45, 0.4, -0.65 ) )
);

list.Reset();
list << "radius" << 0.35;
s->AddObject( s->NewObject( "sphere", list ) );

s->TransformEnd();

s->MaterialEnd();


list.Reset();
list << "file" << "cornell.tga";
LfInt saver = s->NewImager( "tga-saver", list );

s->ImagerBegin( saver );

list.Reset();
list << "eye" << LfPoint( 0, -2.99, 0 );
list << "aim" << LfPoint( 0, 0, 0 );
LfInt camera = s->NewCamera( "pinhole", list );

s->ImagerEnd();

s->Render( camera, 300, 300 );

delete s;
}


$ /usr/local/gcc-2.95/bin/g++ -I ./include -lLightflow main8.cpp -o simplescene8
$ ./simplescene8
$ convert cornell.tga cornell.jpg
$ eog cornell.jpg
cornell.jpg
  • -
  • -

Linux設定メモ

2018/10/23
■Linux設定メモ

ホームディレクトリのフォルダ名を日本語から英語に変更する
$ LANG=C xdg-user-dirs-gtk-update

nautilus-open-terminal
フォルダ内右クリックで[端末の中に開く]

cannot restore segment prot after reloc permission denied
SELinuxのライブラリに対するセキュリティ属性が適切に設定されていない……lightflowPM.soなどのセキュリティ属性を変更する。
rootユーザで
chcon -c -v -R -u system_u -r object_r -t textrel_shlib_t xxx.so


バッテリー確認
$ upower -d

実行形式
$ chmod -R 755 simplescene*

フォルダ削除 一つ上の場所で
# sudo rm -rf gcc-2.95/

Virtualbox dvd-r読み書き用に元ユーザを参加させる
$ sudo gpasswd -a mac vboxusers

フォルダのコピー
$ cp -r gcc-2.95 ~/Documents/
$ sudo cp -r gcc-2.95 /usr/local

Linuxバージョン確認
$ cat /proc/version

/lib/x86_64-linux-gnu/libc.so.6

削除
sudo rpm -e VirtualBox-5.2-5.2.18_124319_fedora26-1.x86_64
インストール
sudo rpm -ivh VirtualBox-5.2-5.2.20_125813_fedora26-1.x86_64.rpm


DVD書込み
growisofs -Z /dev/cdrom -R -J /home/mac/Downloads/isodata/

ありがとうございます。
最初の書込み(R/RW共通),上書きの場合(RWのみ)
growisofs -Z /dev/dvd -R -J ファイル and/or ディレクトリ(群)

追加書込みの場合(R/RW共通)
growisofs -M /dev/dvd -R -J ファイル and/or ディレクトリ(群)

gcc
http://ftp.tsukuba.wide.ad.jp/software/gcc/

glibc確認、下記のコマンドを実行する。
ls -l /lib/libc-*

dnf -v grouplist

http://ftp.jaist.ac.jp/pub/Linux/

Macでisoイメージの作成。
ディスクユーティリティーのコマンドは以下の通り。 isoにしたいディレクトリをDIRの部分に指定する。
hdiutil makehybrid -iso -joliet -o sample.iso DIR

Fedora8 virtualbox guestaddインストール後、起動しない。
unable to load Selinux カーネルパニック 起動しない。
シングルモード起動時 selinux=0 singleで起動。
/etc/selinux/configを編集。
SELINUX=disabledに変更
再起動、guest addition toolが動きました。ありがとうございます。

ロック画面のまま、ログインウィンドウが表示されない場合は、
Ctrl + Alt + F1 でコマンドラインを表示

■共有フォルダ設定、VirtualboxのゲストOS上で
# gpasswd --add {ユーザ名} vboxsf
ユーザをvboxsfグループに追加します。

■VirtualBox共有フォルダ
ubuntu系
sudo nano /etc/modules
cat /etc/modules
# /etc/modules: kernel modules to load at boot time.
#
# This file contains the names of kernel modules that should be loaded
# at boot time, one per line. Lines beginning with "#" are ignored.
vboxsf
--------------

ゲストOSに$mkdir <マウントポイント名>
フォルダを作る。

$sudo mount.vboxsf <設定したホストOSでの共有ファイル名> /home/<ログインに使う名前>/<マウントポイント名>

■その他
tkinter確認
$ python -m Tkinter

iv install
$ sudo apt install openimageio-tools

■論理cpu数 確認
$ grep processor /proc/cpuinfo | wc -l

##ISO ファイル(CDイメージ)を作成する方法##
ファイルやフォルダからisoファイルを作成する場合
# mkisofs -r -J -V <ラベル> -o <ディレクトリ名>
(例)# mkisofs -r -J -V "Mydata" -o imagecd.iso /home/hoge/
  • -
  • -
<< 3/3